

Multi-UNIT Conversions using DIMENSIONAL ANALYSIS

Dimensional analysis is useful when converting between multiple systems of measurement at the same time.

Example 1: Given the speed of a car on a highway is 120 **km/h**, how fast is the car travelling in **miles/min**?

Since we are considering both **length** and **time**, we need to find conversion factors for each unit of measure.

Systems of Measurement Chart

Mass	Volume	Length	Time
1 g = 1000 mg	1 tsp = 5 mL	1 inch = 2.5 cm	1 h = 60 min
1 mg = 1000 mcg	1 $tbsp = 3 tsp (15 mL)$	12 inches = 1 foot	1 minute = 60
1 oz = 30 g	2 tbsp = 1 fluid oz	100 cm = 1 meter*	seconds
1 lb = 16 oz	1 cup = 8 oz	$1000 \text{ m} = 1 \text{ km}^*$	1 day = 24 hours
1 lb= 454 g	1 cup = 250 mL	1 yard = 3 feet	1 week = 7 days
2.2 lb = 1 kg	1 L = 1000 mL	1 mile = 5280 ft	1 year = 12
$1 \text{ kg} = 1000 \text{ g}^*$	1 pint = 2 cups	1 mile = 1.6 km	months
1 metric ton = 1000 kg	1 quart = 2 pints		1 year = 365
	1 gallon = 4 quarts		days

Step 1: State the starting measurement as a fraction. Be sure to include the units.

120 km 1 h

Step 2: Find the conversion factors between our starting units and our desired units.

From the conversion chart we can see that 1.6 km = 1 mile and 1 h = 60 min.

Step 3: State the conversion factor for **length** as a fraction (keeping order in mind).

Since km is in the <u>numerator</u> of the starting unit, place km in the <u>denominator</u> of the conversion factor. In Step 5, we will understand why order is important.

Step 4: State the conversion factor for **time** as a fraction (keeping order in mind).

Since h is in the <u>denominator</u> of the starting unit, place h in the <u>numerator</u> of the conversion factor.

Step 5: Multiply the starting value with both conversion factors and simplify.

$$\frac{120 \text{ km}}{1 \text{ km}} \times \frac{1 \text{ mile}}{1.6 \text{ km}} \times \frac{1 \text{ M}}{60 \text{ min}} = \frac{120 \text{ miles}}{60 \times 1.6 \text{ min}} = \frac{120 \text{ miles}}{96 \text{ min}} = 1.25 \text{ miles/min}$$

Notice that the starting units divide out and we are left with our desired units.

Example 2: How many feet are there in 1508 cm?

Step 1: State the starting measurement as a fraction.

Step 2: Find the conversion factor between our starting unit and our desired unit.

Looking at the conversion chart we notice that there isn't a direct conversion from cm to ft. As a result we need to break this conversion into two steps.

Step 3: State the conversion factor for **cm** in as a fraction (keeping order in mind).

Since cm is in the <u>numerator</u> of the starting unit, place cm in the <u>denominator</u> of the conversion factor.

$$\frac{1 \text{ inch}}{2.5 \text{ cm}}$$

Step 4: State the conversion factor for **in ft** as a fraction (keeping order in mind).

Since inches is in the <u>numerator</u> of the conversion factor above, place inches in the <u>denominator</u> of the conversion factor.

$$\frac{1 \text{ft}}{12 \text{ inch}}$$

Step 5: Multiply the starting value with both conversion factors and simplify.

$$\frac{1508 \text{ cm}}{1} \times \frac{1 \text{ inoh}}{2.5 \text{ cm}} \times \frac{1 \text{ ft}}{12 \text{ inoh}} = \frac{1508 \text{ ft}}{2.5 \times 12} = \frac{1508 \text{ ft}}{30} = 50.27 \text{ ft}$$

Notice that the starting unit divides out and only the desired unit remains.

Example 3: Convert 3 kg/ft into lb/cm?

Step 1: State the starting unit as a fraction.

Step 2: Find the conversion factors between our starting units and our desired units.

For **mass**, the conversion chart tells us that **1 kg = 2.2 lb**.

For **length**, there isn't a direct conversion from **ft** to **cm**, we need to break this conversion into two steps.

Step 3: State the conversion factor for kg to lb as a fraction (keeping order in mind).

Since kg is in the <u>numerator</u> of our starting unit, place kg in the <u>denominator</u> of our conversion factor.

Step 4: State the conversion factor for **ft** in as a fraction (keeping order in mind).

Since ft is in the <u>denominator</u> of the starting unit, place ft in the <u>numerator</u> of the conversion factor.

$$\frac{1 \text{ ft}}{12 \text{ inch}}$$

Step 5: State the conversion factor for **in cm** as a fraction (keeping order in mind).

Since inches is in the <u>denominator</u> of the conversion factor above, place inches in the <u>numerator</u> of the conversion factor.

Step 6: Multiply the starting value with both conversion factors and simplify.

$$\frac{3 \text{ kg}}{1 \text{ ft}} \times \frac{2.2 \text{ lb}}{1 \text{ kg}} \times \frac{2.2 \text{ lb}}{12 \text{ ingh}} \times \frac{1 \text{ ft}}{12 \text{ ingh}} \times \frac{1 \text{ ingh}}{2.5 \text{ cm}} = \frac{3 \text{ lb} \times 2.2}{12 \times 2.5 \text{ cm}} = \frac{6.6 \text{ lb}}{30 \text{ cm}} = 0.22 \text{ lb/cm}$$

Notice that the starting units divide out and only the desired units remain.

Exercises: Convert between the following systems of measurements.

- 1) 17 in into cm
- 4) 7 ft/sec into m/h
- 7) ¾ h into s

- 2) 420 h into weeks
- 5) 50 miles/h into m/s
- 8) 2589 g into lb

- 3) 48 oz into lb
- 6) 2.05 kg/inch into lb/cm
- 9) 135 km/h into ft/s

Solutions:

- 1) 42.5 cm
- 4) 7560 m/h

7) 2700 s

- 2) 2.5 weeks
- 5) 22.22 m/s

8) 5.70 lb

3) 3 lb

6) 1.80 lb/cm

9) 125 ft/s